ABSTRACT

We present empirical studies that consider the effects of stereopsis and simulated aerial perspective on depth perception in translucent volumes. We consider a purely absorptive lighting model, in which light is not scattered or reflected, but is simply absorbed as it passes through the volume.

A purely absorptive lighting model is used, for example, when rendering digitally reconstructed radiographs (DRRs), which are synthetic X–ray images reconstructed from CT volumes. Surgeons make use of DRRs in planning and performing operations, so an improvement of depth perception in DRRs may help diagnosis and surgical planning.

Keywords: Stereo, Stereopsis, X–ray, Radiograph, Volume Rendering

1 INTRODUCTION

It can be difficult to perceive three dimensional shape and structure in translucent, volume–rendered data. This paper investigates perceptual cues that might be used to enhance depth perception in such data.

The cues used to perceive depth by humans in everyday life have been thoroughly studied. For computer–generated images, however, what cues and the way in which these cues should be combined to convey depth remains an ongoing topic of research.

With opaque volumetric objects, shape and depth can be perceived when perceptual depth cues — such as shadows and shading, occlusion, perspective, and texture gradients — are used [9, 21]. However, very little is known about the effects of these cues on depth perception of purely absorptive media.

A purely absorptive medium is one through which light passes with no reflection or scattering. This is approximately what happens with X–ray images of human anatomy. Such images show no solid surfaces and have no depth cues. The lack of solid surfaces and depth cues makes it especially difficult to understand the structure of the volume [1].

To study the effects of different perceptual cues in purely absorptive media, we look at digitally reconstructed radiographs (DRRs). A DRR is a synthetically computed X–ray image that is calculated by integrating the attenuation of light as it passes through a volume toward the viewer (see Figure 1). Each pixel value of a DRR image is a function of the CT values encountered along the projection rays. DRRs are of particular interest because they accurately simulate plain radiographs [20] and, therefore, are used in many medical applications. In intensity–based 2D–to–3D intra–operative registration, DRRs are computed from many different viewpoints to find one that most closely matches a fluoroscopic image [15]. For radiotherapy treatment, DRRs provide reference images to assist in patient positioning [24]. In planning of orthopaedic surgery, DRRs can be used to show intra–articular features not visible in a surface–rendered CT image [16].

Although volume rendering has gained widespread acceptance in the medical community, a DRR rendering may be preferred by radiologists and surgeons (especially orthopaedic surgeons) to a surface (i.e. opaque) rendering of volumetric data as it can show these otherwise–hidden features. Furthermore, radiologists and surgeons have substantial training and experience interpreting X–ray images, and may be reluctant not to use that knowledge.

However, radiologists and surgeons have very few depth cues to use when working with two dimensional X–ray images. The goal of our work is to determine whether the cues of stereopsis and simulated aerial perspective can provide better depth perception in purely absorptive media. To the best of our knowledge, no studies have considered how these two cues can aid depth perception in such media.

2 CUES FOR DEPTH PERCEPTION

2.1 Stereopsis

Stereopsis is the perception of depth due to differences in the left and right retinal images. The separation of our left and right eyes (of about 6 cm) creates two slightly different images of the world; points that lie at different depths in a 3D scene are offset from the center of projection by different distances in the retinal images.

It is not obvious that the stereopsis cue is effective when viewing purely absorptive media: In an absorptive medium, the left and right
Figure 2: Does stereopsis work in absorptive media? With absorptive media (left) the two eyes see different images of a particular point because light from behind is attenuated differently along each path. With surface rendered objects (right) the left and right eye see the same feature in the same 3D position, displaced differently in the projections on the left and right retinas.

Figure 3: An example of perceived depth from aerial perspective. Licensed from dreamstime.com.

Figure 4: (a) In a scattering medium, incident light reflected off a close object or feature does not scatter as much as that off a more distant object. Scattering causing dark portions of the distant object to appear lighter. (b) In a purely absorptive medium, there is no incident light and the difference in adjacent translucencies (e.g. \(|t_1 - t_2|\)) provides no depth cue.

2.2 Aerial Perspective

Aerial perspective is the perception of depth due to the scattering of light in the atmosphere, as shown in Figure 3. Light that reflects off of a close object does not scatter much before reaching the eye, but the same light that reflects off of a distant object undergoes much scattering, causing the darker portions of the object to be reduced in contrast [6]. Objects that exhibit more contrast are assumed to be closer than objects that do not.

In a purely absorptive illumination model, however, there is no reflectance and no incident illumination. Rather, light is attenuated as it passes through the volume. Therefore, a distant difference in translucency is indistinguishable from an equal, close difference in translucency (see Figure 4).

Our experiments considered how aerial perspective affects relative depth perception in absorptive media. For aerial perspective, we considered monocular rendering (i.e. without 3D glasses). The aerial perspective cue was modelled by decreasing contrast as distance from the viewer increased. This had the effect of adding an approximate “uniform scattering” effect, as is present in the atmosphere.

3 RELATED WORK

A number of studies have shown that stereoscopic viewing can aid in perceiving depth, grasping, recognizing, or understanding the shape of computer generated objects [9, 25]. Other studies, however, show that the benefit of stereoscopic viewing is task dependent [22] and for certain applications there is no benefit to stereoscopic viewing [5, 23].

3.1 Stereopsis for Diagnosis and Surgery

In the medical field, clinical application studies have shown promising results for stereoscopic volume rendering of images from the X-ray domain. One study considered the effectiveness of stereoscopic imaging in finding abnormalities in computer–generated mammograms [8]. Mammograms (the standard imaging modality for screening and diagnosis of breast cancer) are devoid of depth cues, making it difficult to detect abnormalities. The study showed that stereomammography improves the detection of certain tissue abnormalities, which can lead to early detection and better diagnosis of breast cancer.
In laparoscopy, a minimally invasive surgical technique used to diagnose and treat a range of abdominal or pelvic problems, surgeons work with 2D video pictures provided on a monitor. It is known that, because of the need for video imaging, there are performance limits to traditional laparoscopic systems due to the 2D representation of the 3D anatomy. Thus, there is a need to develop some mechanism to improve depth perception [5]. Studies, however, have provided a mixed picture of the usefulness of stereoscopic imaging for laparoscopy. Some studies [7, 5] have demonstrated no statistical advantage, whereas others [3, 13] showed a significant improvement in speed and outcome of laparoscopic tasks. In monocular systems, other available cues (such as motion parallax, relative position, occlusion, perspective, and lighting) have been used to compensate for the loss of depth perception produced by the use of 2D images [5].

Mora and Ebert [18] studied whether stereoscopic rendering using “order independent volume rendering” methods, including maximum intensity projection (MIP) and X-ray projection (DRR), can provide enough information to understand volumetric data. While no formal user studies were done, the authors’ experience was that stereoscopic rendering with these methods allows the viewer to better understand the volumetric data.

Calhoun et al. [4] stated that stereoscopic viewing may provide better visualization of the 3D structure of complex anatomy, such as spinal data. Their preliminary results suggest that both radiologists and nonradiologists prefer stereoscopic viewing of medical data sets to conventional monocular display.

3.2 Transparency

Transparency is often used in medical and scientific imaging as a way to enhance shape and depth by superimposing multiple transparent layers of information [11, 14]. In medical imaging, transparency can be used to integrate images from different modalities. For example, 2D anatomical CT data can be overlaid with MRI data in such a way that one can see through the functional image to the structural image [14]. In radiation treatment planning, transparency may help to more effectively visualize radiation dosages with respect to a patient’s anatomy. Kasrai et al. [14] performed a number of psychophysical experiments to study transparency with stereoscopic viewing, transparency and spatial frequency, and multiple surface transparency.

To date, research on the perception of transparency and use of transparency to enhance depth perception has focused on viewing an opaque object through a transparent layer [17, 25] where contour junctions exist [2]. In these experiments, at least three layers exist: a background; an opaque surface; and a transparent layer covering these surfaces [12]. To our knowledge, no studies on perception in purely absorptive media (where no opaque objects exist and there is no presence of partial occlusion) have been done.

4 Methodology

Our test data consisted of a vertical cylindrical volume that rotated about its vertical axis, as shown in Figure 5. Test subjects were asked to determine the direction of rotation ... that is, whether the front surface was rotating right–to–left or left–to–right. A DRR image was computed by backlighting the cylinder and computing the attenuation of light as it passed through the cylinder. The cylinder was rendered under orthographic projection to remove any perspective cues.

In a monocular orthographic view with no depth cues, the rotation direction is ambiguous because the order of the attenuation coefficients along each ray toward the eye has no effect on the image, and subjects are expected to have 50% accuracy.

We use the term “monocular” to refer to viewing without 2D glasses. Subjects actually used both eyes, but the terms “non-stereoscopic” and “2D” would not adequately convey the differences in viewing modes.

Subjects pressed either the left or the right arrow key on the computer keyboard to indicate their classification. Pressing the key recorded the response and, after a time interval of eight seconds during which time subjects were shown a blank screen, the next stimulus was presented. Subjects were timed and were asked to respond as accurately, but also as quickly, as possible. Preliminary tests showed that subjects performed better with black–on–white DRR rendering, so this was used. (Note that Figure 1 is white–on–black.)

4.1 Apparatus

Images were generated at greater than 15 frames per second on a 2.8GHz Pentium 4 processor. They were displayed on a ViewSonic Professional Series P95f+ CRT display and viewed by the subjects through e–Dimensional Wireless 3D LCD shutter glasses (Florida, USA). The P95f+ display, with PerfectFlat screen technology, displays distortion-free (stereoscopic) images. The window size was 300x410 pixels and the stimulus occupied 260 by 285 pixels in the center of the window. Subjects sat approximately 50 cm away from the monitor. An interpupillary distance of 6 cm was used to create the stereo pairs.

In order to present flicker-free images to subjects, two things were done. First, the maximum monitor refresh rate 100Hz (50Hz per eye) was used. Second, each experiment was conducted in a dark room with no fluorescent lights which could have interfered with the infrared receptor of the glasses and caused flickering. No subjects reported flickering.
4.2 Illumination Models

For DRR rendering, the radiance visible to the eye along ray \(\omega \) was defined as

\[
L(\omega) = L_0 e^{-\int_{s_0}^{s_1} \tau(s) \, ds}
\]

where the ray through the volume is parameterized between \(s_0 \) and \(s_1 \), the attenuation coefficient is \(\tau(s) \), and \(L_0 \) is the radiance of the backlight.

To implement contrast reduction, we used the general volume rendering integral

\[
L(\omega) = \int_{s_0}^{s_1} C(s) \tau(s) \, ds e^{-\int_{s_0}^{s_1} \tau(u) \, du}
\]

where \(C(s) \) is the “radiance density.” To get the purely absorptive model of Equation 1, \(C(s) \) is set to zero everywhere except where the backlight enters the volume (i.e. \(C(s_0) \tau(s_1) \, ds = L_0 \)).

Contrast reduction is then achieved by shifting radiance densities, \(C(s) \), toward white from their usual solid black. At distance \(d \) from the viewer, normalized so that \(d \in [0, 1] \) for all points in the volume, we set

\[
C(s) = (1 - k) d
\]

where \(k \) was a “contrast factor”. This is identical to the OpenGL fog model.

For \(k = 0 \), points near the back of the volume emitted the same radiance as the backlight, resulting in complete loss of contrast at the back. For \(k = 1 \), points near the back emitted no radiance, resulting in no change in contrast. For any value of \(k \), points at the front did not change in contrast. To study contrast reduction, \(k \) was varied from 0.75 to 1.0 in increments of 0.05.

4.3 Stimuli

The attenuation coefficients of the volume inside the cylinder were varied from 0.75 to 1.0 in increments of 0.05.

To study the effect of opacity, we used values of \(\nu \) from 0.0 (completely transparent) to 0.9 (almost opaque). The same Perlin noise was used for the surface and for the interior volume.

\[
\tau = \int_{s_0}^{s_1} \tau(s) \, ds
\]

\[
L(\omega) = L_0 e^{-\int_{s_0}^{s_1} \tau(s) \, ds}
\]

\[
L(\omega) = \int_{s_0}^{s_1} C(s) \tau(s) \, ds e^{-\int_{s_0}^{s_1} \tau(u) \, du}
\]

\[
C(s) = (1 - k) d
\]

\[
\nu = \frac{1}{a} \sum_{i=0}^{n-1} \frac{N(b/x)}{d^2}
\]

\[
da = ds f_\nu(\tau) = ds \begin{cases} \tau + \tau (2\nu - 1) & \text{for } \nu \leq \frac{1}{2} \\ \tau + (1 - \tau)(2\nu - 1) & \text{for } \nu > \frac{1}{2} \end{cases}
\]

\[
da = ds \begin{cases} \tau + \tau (2\nu - 1) & \text{for } \nu \leq \frac{1}{2} \\ \tau + (1 - \tau)(2\nu - 1) & \text{for } \nu > \frac{1}{2} \end{cases}
\]

where \(d \) is the infinitesimal distance along \(\omega \) in Equation 2, and \(d\alpha \) is the opacity of that infinitesimal segment.

To study the effect of opacity, we used values of \(\nu \) from 0.0 (completely transparent) to 0.9 (almost opaque). The same Perlin noise was used for the surface and for the interior volume.

4.4 Stereoscopic Experiments

Fifteen subjects were each presented with 100 instances of rotating cylinders. Five opacity values, \(\nu = 0.0, 0.1, 0.3, 0.6, \) and 0.9 (from equation 4), and five persistence values, \(a = 1, 2, 3, 4, \) and 5 (from equation 4), were considered. Opacity was varied by altering the density of Perlin noise within the cylinder. Each combination of opacity and spatial frequency were shown to the subjects, twice in mono and twice in stereo (one time in each direction, left-to-right and right-to-left, in order to avoid personal bias). The stimuli were presented randomly, interleaving stereoscopic and monoscopic images and the order in which instances were presented was randomized for each subject. Subjects wore the stereoscopic glasses at all times so that the absence of glasses alone did not allow them to distinguish whether they were viewing monoscopic or stereoscopic images. Subjects were evaluated on correctness and decision response time.

4.5 Simulated Aerial Perspective Experiments

Fifteen different subjects were presented with 24 cases of rotating cylinders where contrast on the back surface and within the cylinder was reduced, as described in Equation 3. The cylinder interior was rendered with a low opacity (\(\nu = 0.1 \)) and the same low frequency Perlin noise (\(a = 1, b = 2, n = 2 \)) was used. Six contrast values (\(k \) in Equation 3), each shown four times, ranging from 0.75 to 1.0 in 0.05 increments, were evaluated.

5 RESULTS AND DISCUSSION

For the experiments, we measured each subject’s classification correctness and decision response time, then analyzed the data using an analysis of variance (ANOVA) test.
5.1 Stereoscopic Experiments

A one–way ANOVA test showed that viewing mode (monoscopic or stereoscopic) significantly affected classification correctness ($p < 0.001$). Mean classification correctness over all persistences and opacities for monocular viewing was 51.7% (SE 1.5%), which, as expected, was near the chance value of 50%; stereopsis improved overall classification correctness to 80.1% (SE 1.6%). The results for mean classification correctness are plotted in Figure 7, where correctness is a function of persistence. The results for mean classifications where correctness is a function of persistence are plotted in Figure 8.

These results are strong evidence that stereoscopic rendering provides good relative depth perception in purely absorptive media.

5.1.1 Opacity

A one–way ANOVA test showed that opacity has no significant effect on classification correctness within absorptive materials ($p = 0.80$). This is apparent in Figure 7, where the mean classification correctness is essentially unchanged for various opacity values. We analyzed monocular viewing and stereoscopic viewing separately, to determine if there are differences for the two presentation methods.

For monocular viewing, a one–way ANOVA test showed that opacity has no significant effect on classification correctness, regardless of the persistence values used ($p = 0.98$). These results are plotted in Figure 9.

For stereoscopic viewing, a one–way ANOVA test showed that opacity also has no significant effect on classification correctness, regardless of the persistence values used ($p = 0.37$). These results are plotted in Figure 10.

5.1.2 Spatial Frequency

Spatial frequency had no significant effect on classification correctness ($p = 0.83$). These results were presented in Figure 8, where the mean classification correctness as a function of persistence was plotted. We analyzed the presentation modes separately and determined that there were no differences for either monocular viewing ($p = 0.41$) or for stereoscopic viewing ($p = 0.46$).

Plots of classification correctness as a function of persistence, for all values of opacity, are shown in Figure 11 for monocular viewing and in Figure 12 for stereoscopic viewing.

5.1.3 Response Times

Interestingly, stereoscopic response times (mean $= 6.23$ secs, SE $= 0.24$) were similar to those of monocular response times (mean $= 5.93$ secs, SE $= 0.26$) although a reasonable assumption would be that stereo viewing would reduce response times, as it should make the decision task easier. ANOVA test results showed that there was no significant difference between response times for the two viewing groups ($p = 0.64$). We posit two possible explanations for similar response times. One possibility is that there was a latency in fusing the stereo pairs when they first appeared. Another possibility is that the monocular cases were ambiguous and thus led subjects, upon recognizing the presentation mode as being monocular, to quickly choose a direction based on personal bias.

The ANOVA test showed that both opacity and spatial frequency had an effect on response time. Opacity had a significant effect on response time ($p = 0.011$). Increasing opacity was associated with longer response times, as plotted in Figure 13. We speculate that this was because it was more difficult, with increased opacity, for the subject to find features to follow, either in the volume or on the surface, in order to determine the direction of rotation.
There was a marginal effect of spatial frequency on response time ($p = 0.065$). Response times change with persistence, as shown in Figure 14, but not in a recognizable way.

5.2 Simulated Aerial Perspective Experiments

Results showed that at contrast factors between 0.75 and 0.85, the effectiveness of contrast reduction matched that of stereopsis as a depth cue. Mean classification correctness with contrast reduction between factors of 0.75 and 0.85 was 81.1% (SE=4.9%), and with stereoscopic viewing for a low opacity cylinder, $v = 0.1$ was 81.3% (SE=0.8%). Furthermore, at a contrast factor of 0.75 the effectiveness of this depth cue exceeded that of stereopsis; classification correctness was 91.7% (SE=3.135%).

A one–way ANOVA test showed a significant effect of contrast reduction on classification correctness ($p < 0.001$). Classification correctness was about 50% with no contrast reduction ($k = 1.0$) but quickly improved with even slightly reduced contrast. Figure 15 shows a clearly increasing trend in classification accuracy as the contrast of the cylinder was decreased. Lower contrast factors, however, resulted in a perceptible loss of information in the distant parts of the volume.
comes with contrast reduction, and will test different contrast re-
how depth perception improves their performance at particular
provides more information than monocular rendering.

stereoscopic viewing of DRRs is a viable technique for measuring
tude sample t–test showed that whereas the stereoscopic technique
lining was performed separately in monocular and stereoscopic ren-
acetabular osteotomy. The observer picked points on the DRRs,
expert observer viewed 20 pelvic CT scans (10 preoperative and
much of the acetabulum or hip socket is covered by the femoral

The experimental results suggest strongly that relative depth can
be perceived using stereoscopic viewing in purely absorptive me-
In this study, one non-
observer viewed 20 pelvic CT scans (10 preoperative and
observer picked points on the DRRs, separat-
the femoral head and the acetabulum. The out-
lining was performed separately in monocular and stereoscopic ren-
ding modes for each of the 20 CT data sets. A two–way indepen-
dent sample t–test showed that whereas the stereoscopic technique
related to a currently accepted method for measuring acetabu-
coverage ($t = 2.148, p = 0.038$), the monocular equivalent did not correlate ($t = 0.825, p = 0.415$). These results suggest that
stereoscopic viewing of DRRs is a viable technique for measuring acetabular coverage. Furthermore, stereoscopic rendering of DRRs

Future work will consist of studies with surgeons to determine
how depth perception improves their performance at particular
tasks. We will also measure experimentally the loss of data that
comes with contrast reduction, and will test different contrast re-
duction functions.

6 Conclusion and Future Work

We have presented a discussion of stereoscopic volume rendering
of purely absorptive media, an examination of the perception of
relative depth in DRRs using stereopsis and simulated aerial per-
spective, and psychophysical experiments to investigate the effec-
tiveness of these cues.

The experimental results suggest strongly that relative depth can
be perceived using stereoscopic viewing in purely absorptive me-
media. Interestingly, the data’s opacity and spatial frequency have
little effect on accuracy with stereoscopic rendering. It was also
interesting to find that simulated aerial perspective provides a cue
that can equal that of stereopsis, at levels of contrast reduction that

To extend the stereoscopic work presented above and to evaluate
the scalability of our results, we proposed a quick and easy stereo-
scopic DRR technique to measure acetabular coverage (i.e. how
much of the acetabulum or hip socket is covered by the femoral
head) inorder to diagnose hip dysplasia [10]. In this study, one non-
expert observer viewed 20 pelvic CT scans (10 preoperative and
10 postoperative) of patients treated using computerassisted peri-
acetabular osteotomy. The observer picked points on the DRRs,
separately outlining the femoral head and the acetabulum. The out-
lining was performed separately in monocular and stereoscopic ren-
dering modes for each of the 20 CT data sets. A two–way indepen-
dent sample t–test showed that whereas the stereoscopic technique
related to a currently accepted method for measuring acetabu-
coverage ($t = 2.148, p = 0.038$), the monocular equivalent did not correlate ($t = 0.825, p = 0.415$). These results suggest that
stereoscopic viewing of DRRs is a viable technique for measuring acetabular coverage. Furthermore, stereoscopic rendering of DRRs

Future work will consist of studies with surgeons to determine
how depth perception improves their performance at particular
tasks. We will also measure experimentally the loss of data that
comes with contrast reduction, and will test different contrast re-
duction functions.

References

fluence of two-dimensional versus three-dimensional imaging on
cal roc studies of digital stereomammography. IEEE Transactions on
[9] G. Hubona, P. Wheeler, G. Shirah, and M. Brandt. The relative con-
tributions of stereo, lightin and background scenes in promoting 3d
depth visualization. ACM Transaction on Computer-Human Interac-
assessment of acetabular coverage using stereoscopic drs. Medicine
Meets Virtual Reality 14: Accelerating Change in Healthcare: Next
smoothly curving transparent surfaces via texture. IEEE Transactions
and J. Marescaux. Stereoscopic vision provides a significant advan-
transparency in medical images. In Medical Image Computing and
Conference, Cambridge, UK Proceedings, volume 1679, pages 726–
[15] David LaRose. Iterative X-ray/CT Registration Using Accelerated
University, Pittsburgh, PA, May 2001.
and A. L. Jacob. Three-dimensional fracture simulation for preoperative
planning and education. European Journal of Trauma, 27(4):171–177,
August 2001.
[17] F. Metelli. The perception of transparency. Scientific American,
[18] B. Mora and D. S. Evert. Instant volumetric understanding with order-
dependent volume rendering. Computer Graphics Forum
Small, and D. R. Pichora. The sensitivity of carpal bone indices to
Three-dimensional fracture simulation for preoperative and
planning and education. Medical Image Computing and
Assisted Intervention - MICCAI’99, Second International
Conference, Cambridge, UK Proceedings, volume 1679, pages 726–
[22] W. Kunert, and M.O. Schurr. Comparative study of various 2-D and 3-D vision systems in minimally invasive
